COMP | I0/L Lecture 9

Mahdi Ebrahimi

Some slides adapted from Dr. Kyle Dewey

Qutline

® Modulus (%) operator

® The boolean type

if/else

® Testing approaches with 1 f / else

Modulus (%) Operator

Modulus (%) Operator

Gets the remainder after division is performed on ints.

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =5 / 2;

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =5 / 2;
X: 2

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =5 / 2;

X: 2 2 remainder 1

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =5 / 2;

X: 2 2 remainder 1

int x = 5 |% 2;

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =5 / 2;

X: 2 2 remainder 1

int x = 5 %] 2;
1

2 remainder 1

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =1 / 2;

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =1 / 2;
x: 0

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =1 / 2;

x: O 0 remainder 1

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =1 / 2;

x: O 0 remainder 1

int x =1 |% 2;

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =1 / 2;

x: O 0 remainder 1
int x =1 |% 2;
x: 1

Modulus (%) Operator

Gets the remainder after division is performed on ints.

int x =1 / 2;

x: O 0 remainder 1

int x = 1 (%] 2;

x: 1 0 remainder 1

ModExample. ja

Example:

Va

I

Arithmetic Operators

Operator meaning Examples
+ plas - Add two operands K+}¥
Minus - subtract right operand from the left .
i X-y
! " Multiplication- multiply two operands K*}"
f Division - devide left operand by the right one xf}r
Modulus - remainder of the division of left
0
Yo operand by the right xo/hv

&

*

\ 4

Syntax and semantics

Addition, subtraction: + and —, int and double

int x 21+4;
double y = 14.1-2;

Multiplication: *, int and double

int x 21%4;
double y = 14.1%*2.5;

Division: /, different for int and double

1Bt % = 21745
double y = 21/4;
double y = 21/4.0;
Modulus: %, only for int
int x = 21%4;

(x = 25)

(v = 12.1)
(x = 84)

(v = 35.25)
(x = 5)

(y = 5.0)
(y = 5.25)
(x = 1)

Operator precedence

¢ Evaluate a + b * ¢
— multiplication first? a+ (b * c)
— addition first? (a + b) * c

+ Java solves this problem by assigning priorities to
operators (operator precedence)

Operator priority
— operators with high priority | highest to lowest)
are evaluated before

operators with low priority

— operators with equal priority
are evaluated left to right

)
/ %

+ * ~

= W hp -

When In doubt, use parentheses

¢ a+ b *c=a+ (b * c)
— because * has higher priority than +

¢ To first perform the + operation we need to use
parentheses

— (a + b) * c

+ [If in any doubt use extra parentheses to ensure the
correct order of evaluation

— parentheses are free!

— cause no extra work for the computer when the
program is executing

— only make it easier for you to work out what is
happening

\ 4

\ 4

Examples

Java adheres to traditional order of operations

* and / have higher priority than + and —

int x
int y

3+ 3 % 6;
3 &+ 8) * 6;

(x
(y

Parentheses are free, use them liberally

10E 3

Equal priority operations are evaluated left-to-right in

({3 + 3) * (6));

the absence of parentheses

int w
int x
int y
int z

34 /] 2% 6;
2 A 42 ® 6
3% 4+ 2 % 6;
3% (4+2) * 6;

(z

(w
(x

(y
(z

33)
48)

48)

36)
1)
24)
108)

boolean

boolean

® Represents the truth value of a question

® Only two possible values:true and false

boolean

® Represents the truth value of a question

® Only two possible values:true and false

boolean x = true;

boolean

® Represents the truth value of a question

® Only two possible values:true and false

boolean xXx = true;

boolean y = false;

Comparisons

boolean is useful for arithmetic comparisons

Comparisons

boolean is useful for arithmetic comparisons

boolean a =5 > 1; // sets a to true

Comparisons

boolean is useful for arithmetic comparisons

5 > 1; // sets a to true

boolean a

boolean b 5 < 1; // sets b to false

Comparisons

boolean is useful for arithmetic comparisons

boolean a 5 > 1; // sets a to true

boolean b 5 < 1; // sets b to false

boolean c 5 <= 5; // sets ¢ to true

Comparisons

boolean is useful for arithmetic comparisons

boolean a 5 > 1; // sets a to true

boolean b 5 < 1; // sets b to false

boolean c 5 <= 5; // sets ¢ to true

boolean d 6 > 5; // sets d to true

Comparisons

boolean is useful for arithmetic comparisons

boolean e = 5 == 5; // sets e to true

Comparisons

boolean is useful for arithmetic comparisons

boolean e 5 == 5; // sets e to true

boolean £

5 == 6; // sets f to false

Comparisons

boolean is useful for arithmetic comparisons

boolean e = 5 == 5; // sets e to true
boolean £ = 5 == 6; // sets f to false
boolean g = 5 !=5; // sets g to false

Comparisons

boolean is useful for arithmetic comparisons

boolean e = 5 == 5; // sets e to true
boolean £ = 5 == 6; // sets f to false
boolean g = 5 !=5; // sets g to false

boolean h // sets h to true

|
Ul

|
o)
~

Relational Operators — Relational operators are used to compare the value of operands
(expressions) to produce a logical value. A logical value is either true or false.

Operators Meaning Example Result
< Less than 5<2 false
> Greater than 5>2 true
<= Less thanor 5<=2 false

equal to
>= Greater than 5>=2 true
or equal to
== r\Equal to 5=2 false
1= L{\Imt equal to 51=2 true

String Concatentaion

Works as you might expect

String Concatentaion

Works as you might expect

true + “foo”

String Concatentaion

Works as you might expect

true + “foo”

“truefoo”

String Concatentaion

Works as you might expect

true + “foo”

“truefoo”

“bar” + false

String Concatentaion

Works as you might expect

true + “foo”

“truefoo”

“bar” + false

“barfalse”

Example:
Comparisons.java

£/ else

if/else

Used to conditionally execute code
based on a boolean truth value

- [else

1.

Used to conditionally execute code
based on a boolean truth value

1f (true)

System.out.println (“yes”);

} else {

System.out.println (“no”);

J

{

if/else

Used to conditionally execute code
based on a boolean truth value

1f (true) {
System.out.println (“yes”);

} else {
System.out.println (“no”);

J

Prints yes

- [else

1.

Used to conditionally execute code
based on a boolean truth value

1t

System.out.println (“yes”) ;

} else {

System.out.println (“no”);

J

)

if/else

Used to conditionally execute code
based on a boolean truth value

if) o
System.out.println (“yes”);

} else {
System.out.println (“no”);

J

Prints no

Example:
' sGreaterThanb.java

Mul

Example:

tiple.

Re

turn.java

Testing Advice with

- [else

1:

® Ideally, for each i £/ else, have two tests

® One for if the condition is true

® Another

for if the conditionis false

Testing Advice with

- [else

1:

® Ideally, for each i £/ else, have two tests

® One for if the condition is true

® Another

for if the conditionis false

Question:which tests may be good for
testing absolute value!?

Testing Advice with

- [else

1:

® Ideally, for each i £/ else, have two tests

® One for if the condition is true

® Another

for if the conditionis false

Question:which tests may be good for

testi

ng absolute value!?

A positive value and a negative value

Example:
MultipleReturnTest. java

